Entry requirements
A first or second class UK honours degree in engineering, or an equivalent degree in engineering, engineering science, physics, applied mathematics, or other appropriate applied science.
Months of entry
October
Course content
The emergence of transformative automated and autonomous technology in both crewed and uncrewed air traffic management systems, including new, sustainable and intelligent aerial platforms, to transport people and goods, represents the next cornerstone in the aerospace industry’s on-going evolution.
This is driven by market and industry trends such as the digitalisation of Air Traffic Management (ATM), the explosion of Uncrewed Aerial Systems (UAS) applications in recent years and their integration into crewed aviation airspace. This is creating a significant demand for talented graduates who can help unlock the full potential of Advanced Air Mobility (AAM) applications. The Advanced Air Mobility Systems MSc is designed to equip you with the skills required to pursue a successful career in transforming the aviation industry, applying the knowledge learned to introduce new automated and autonomous solutions, to enable a safe, orderly and expeditious integrated airspace, where uncrewed aerial systems operate along side crewed aircraft.
Who is it for
This course provides engineering, physics, computing, or mathematics graduates with advanced skills which can be applied to aviation, drone, security, defence, and aerospace industries.
Why this course
The Advanced Air Mobility Systems MSc is designed to equip you with the skills required to pursue a successful career in transforming the aviation industry, applying the knowledge learned to introduce new automated and autonomous solutions to improve the industry as a whole.
Taught through a unique combination of theoretical and practical-based sessions, you will cover subjects in ATM, Uncrewed Traffic Management (UTM), enabling sensor infrastructure (communications, navigation, surveillance), sensor fusion and artificial intelligence for autonomous systems. The MSc course content has been based on advice from the Industrial Advisory Board, comprising industrial representatives from big primes to small- and medium-sized enterprises. The Industrial Advisory Board also recommend thesis and project topics ensuring their real-world relevance, another effective differentiator in the job market. This allows students to familiarise themselves with companies from the Industrial Advisory Board and be exposed to their research interests, paving the way for potential job opportunities.
This course is unique in that it offers a combination of subjects much sought after in the aviation, air traffic, and drone industries, that are not covered in a single MSc course anywhere else, giving particular emphasis to the digitalised integrated architecture, the enabling sensor infrastructure (incl. communication, navigation, and surveillance) and intelligent algorithms, such as flight management and planning, and deconfliction. Successful graduates of our MSc course become conversant in key aspects of automation and autonomy in emerging crewed/uncrewed traffic management which places them at an advantage in today's competitive employment market.
A key feature of the MSc is the inclusion of a CAA approved UAV remote pilot competence course. The course incorporates a ground school element for flight planning – covering principles of flight, rules and regulations of the air, using aviation charts, risk assessment and meteorology – and flight training to provide basic pilot competence, including how to respond in an emergency and being able to operate safety features. Successful completion of the course allows students to fly small UAV’s in the Open Category.
.